- 一级建造师考试
- 二级建造师考试
- 三支一扶
- 安全评价师考试
- 保险经纪资格考试
- 报关员资格考试
- 博士入学考试
- 成人高考
- 成人英语三级考试
- 程序员考试
- 出版专业资格考试
- 大学英语三级
- 大学英语四六级考试
- 单证员考试
- 导游证考试
- 电气工程师
- 电子商务设计师考试
- 房地产经纪人考试
- 房地产评估师考试
- 高级会计师资格考试
- 高考
- 高中会考
- 给排水工程师
- 公共英语等级考试
- 公务员考试
- 国际货运代理
- 国际内审师
- 国家司法考试
- 化工师
- 环境影响评价师
- 会计人员继续教育
- 会计职称考试
- 基金从业资格
- 计算机等级考试
- 计算机软件水平考试
- 监理工程师考试
- 教师招聘
- 教师资格
- 结构工程师考试
- 经济师考试
- 考研
- 空姐招聘
- 遴选
- 美术高考
- 普通话考试
- 期货从业资格
- 求职招聘
- 人力资源管理师
- 软件设计师考试
- 商务英语考试(BEC)
- 社会工作者职业水平考试
- 审计师考试
- 事业单位招聘
- 事业单位招聘
- 数据库系统工程师
- 特许公认会计师(ACCA)
- 同等学力
- 统计师考试
- 托福考试(T0EFL)
- 外贸跟单员考试
- 网络工程师考试
- 网络管理员考试
- 网络规划设计师考试
- 系统分析师考试
- 消防工程师
- 小升初
- 校园招聘
- 信息系统管理工程师考试
- 选调生考试
- 雅思考试
- 岩土工程师考试
- 医生招聘
- 艺术高考(艺考)
- 银行从业人员资格
- 银行招聘
- 英语翻译资格考试
- 营销师考试
- 造假工程师考试
- 证券从业资格考试
- 中考
- 注册安全工程师考试
- 注册测绘师考试
- 注册城市规划师考试
- 注册环保工程师考试
- 注册会计师考试
- 注册计量师考试
- 注册建筑师考试
- 注册税务师考试
- 注册资产评估师
- 专升本考试
- 专业英语四级八级考试
- 自考
- 安全员
- 跟单员
- 考试一本通
- 其它资料
中考网 www.zhongkao.com
18.2 勾股定理的逆定理
教学目标
知识与技能:
探索并掌握直角三角形判别思想,会应用勾股逆定理解决实际问题.
过程与方法:
经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,掌握情理数学意识.
情感态度与价值观:
培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值.
重难点、关键
重点:理解并掌握勾股定理的逆定性,并会应用.
难点:理解勾股定理的逆定理的推导.
关键:以古埃及人的思考方法,来领会勾股逆定理,同时动手验证,体验勾股定理的
逆定理.
教学准备
教师准备:投影仪,投影片,补充材料,教具:钉子与打结的绳子.
学生准备:(1)复习勾股定理,预习“勾股逆定理”;(2)纸片、剪刀.
学法解析
1.认知起点:在学习了勾股定理的基础上学习勾股逆定理.
2.知识线索:历史情境 命题 2 勾股定理逆定理.
3.学习方式,情境认知,操作感悟,师生互动.
教学过程
一、创设情境,导入课题
【实验观察】
实验方法:用一根钉上 13 个等距离结的细绳子,让同学操作,用钉子钉在第一个结
上,再钉在第 4 个结上,再钉在第 8 个结上,最后将第十三个结与第一个结钉在一起.
然后用角尺量出最大角的度数.(90°),可以发现这个三角形是直角三角形.
【显示投影片 1】
(课本 P81 图 18.2-1)
【活动方略】
教师叙述:这是古埃及人曾经用过这种方法来得到直角,这个三角形三边长分别为多
少?(3,4,5).这三边满足了怎样的条件呢?(32+42=52),是不是只有三边长为
3,4,5 的三角形才能构成直角三角形呢?请同学们动手画一画:如果三角形的三边分
别为 2.5cm,6cm,6.5cm,满足关系式“2.52+62=6.52”,画出的三角形是直角三角
形吗?换成三边分别为 5cm,12cm,13cm 或 8cm,15cm,17cm 呢?
学生活动:动手画图,体验发现,得到猜想.
教师板书:命题 2.(见课本 P81)
【问题探究】
教师问题:命题 1、命题 2 的题设、结论分别是什么?
学生回答:(略)
教师分析:可以看出,大家回答的这两个命题的题设和结论正好是相反的,像这样的
两个命题称为互逆命题.如果把其中一个叫做原命题,那么另一个就叫做它的逆命题.
教师提问:请同学们举出一些互逆命题,并思考:是否原命题正确,它的逆命题也正
确呢?举例说明.
学生活动:分四人组,互相交流,然后举手发言.
中考网 www.zhongkao.com
中考网 www.zhongkao.com
素材提供:
1.原命题:猫有四只脚.(正确)
逆命题:有四只脚的是猫(不正确)
2.原命题:对顶角相等(正确)
逆命题:相等的角是对顶角(不正确)
3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)
逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.(正确)
4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)
逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)
教师活动:在学生充分的举例、交流的基础上,提供上面的素材让学生再认识,并明
确:(1)任何一个命题都有逆命题,(2)原命题是正确,逆命题不一定正确,原命题
不正确,逆命题可能正确,(3)原命题与逆命题的关系就是,命题中题设与结论相互
转换的关系.
【设计意图】采用从学生实验、操作中感知勾股定理的逆定理;比较勾股定理(命题
1)与命题 2 的题设与结论,认知命题的互逆性.
二、观察探讨,研究新知
【问题探究 1】(投影显示)
在图 18.2-2 中,△ABC 的三边长 a,b,c 满足 a2+b2=c2,如果△ABC 是直角三
角形,它应该与直角边是 a,b 的直角三角形全等.实际情况是这样的吗?我们画一个
直角三角形 A′B′C′,使 B′C′=a,A′C′=b,∠C′=90°(课本图 18.2-2),再将画好的
△A′B′C′剪下,放到△ABC 上,请同学们观察,它们是否能够重合?试一试!
【活动方略】
教师活动:操作投影仪,提出探究的问题,引导学生思考,然后再提问个别学生.
学生活动:拿出事先准备好的纸片、剪刀,实验、领会、感悟:(1)它们完全重合
(2)理由.在△A′B′C′中,A′B′2=B′C′2+A′C′2=a2+b2,因为 a2+b2=c2 ,因此,A′B
′=C . 从 △ ABC 和 △ A′B′C′ 中 , BC=a=B′C′ , AC=b=A′C′ , AB=c=A′B′ , 推 出
△ABC≌△A′B′C′,所以∠C=∠C′=90°,可见△ABC 是直角三角形.
教师归纳:由上面的探究过程可以说:用三角形全等可以证明勾股定理的逆命题是正
确的.而如果一个定理的逆命题经过证明是正确的,那么它也是一个定理, 我们把上面
所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理.
【设计意图】
采用实验、观察、比较的数学手法,突破难点.
【课堂演练】(投影显示)
1.以下各组数为边长,能组成直角三角形的是(C).
A.5,6,7
B.10,8,4
C.7,25,24 D.9,17,15
2.以下各组正数为边长,能组成直角三角形的是(B).
A.a-1,2a,a+1
B.a-1,2 a ,a+1
C.a-1, 2a ,a+1
D.a-1, 2 a,a+1
【活动方略】
教师活动:操作投影仪,组织学生演练,并讲评.
学生活动:应用所学,完成演练题,并从中归纳判定方法:将两条较小数平方和是否
等于最大边长的平方.
【评析】在演练中,提示学生阅读课本 P83 例 1.
三、范例点击,提高认知
中考网 www.zhongkao.com
中考网 www.zhongkao.com
【显示投影片】
例 2(见课本 P83 例 2)
思路点拨:首先应根据题意画出图形,(见课本 P83 图 18.2-3).这是一种象限
图,依图形可以看出,“远航”号的航向已经知道,只要求出两艘轮船的航向所成的角,就
可以知道“海天”号的航向.
【活动方略】
教师活动:操作投影仪,分析例 2,特别是要教会学生如何画出象限图,可适时复习
“象限角”的画法.然后确定一个三角形,引导学生应用所学的“勾股定理的逆定理”.
学生活动:理解图形的画法,参与教师讲例,并归纳方法:(1)画出正确的象限图
(2)确定一个三角形,再应用勾股定理的逆定理解决问题.
【问题探究 2】(投影显示)
如图,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=
1
BC,
4
求证:AF⊥EF.
思路点拨:要证 AF⊥EF,需证△AEF 是直角三角形,
由勾股定理的逆定性,只要证出 AF2+EF2=AF2 就可以了.
教师活动:操作投影仪,组织学生讨论,引导学生写出推理过程.
学生活动:先独立思考,再与同伴交流,并踊跃上台“板演”.
证明:连结 AE,设正方形边长为 a,则 DF=FC=
a
a
,EC= ,
2
4
a 2
a
5 2
) +( )2=
a;
2
4
16
a
a
5 2
同理可证.在 Rt△ECF 中,有 EF2=( )2+( )2=
a,
2
4
16
1
3
在 Rt△ABE 中,有 BE=a- a= a,
4
4
3
25
∵AE2=a2+( a)2=
a2,
4
16
在 Rt△ECF 中,有 EF2=(
∴AF2+EF2=AE2.
根据勾股逆定理得,∠AEF=90°,
∴AF⊥EF.
【设计意图】以例 2 为理解勾股逆定理的应用,再补充“问题探究 2”来拓展勾股定理
逆定理的应用范围.
四、随堂练习,巩固深化
1.课本 P84 “练习”1,2,3
中考网 www.zhongkao.com
中考网 www.zhongkao.com
2.【探研时空】
若 △ ABC 的 三 边 a , b , c 满 足 条 件 a2+b2+c2+338=10a+24b+26c , 试 判 定
△ABC 的形状.
(提示:根据所给条件,只有从关于 a,b,c 的等式入手,找出 a,b,c 三边之间的
关 系 , 应 用 分 解 因 式 可 得 ( a-5 ) 2+ ( b-12 ) 2+ ( c-13 ) 2=0 , 求 出
a=5,b=12,c=13,∵a2+b2=c2,∴△ABC 是 Rt△).
五、课堂总结,发展潜能
1.勾股定理的逆定性:如果三角形的三条边长 a,b,c 有下列关系:a2+b2=c2,
那么这个三角形是直角三角形.(问:勾股定理是什么呢?)
2.该逆定理给出判定一个三角形是否是直角三角形的判定方法.
3.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数
运算,通过学习加深对“数形结合”的理解.
六、布置作业,专题突破
1.课本 P84 习题 18.2 1,2,3,4,5.
2.选用课时作业优化设计.
七、课后反思
课时作业优化设计
【驻足“双基”】
1.请完成以下未完成的勾股数:
(1)8、15、_______;(2)10、26、_____.
2.△ABC 中,a2+b2=25,a2-b2=7,又 c=5,则最大边上的高是_______.
3.以下各组数为三边的三角形中,不是直角三角形的是( ).
A. 3 +1, 3 -1,2 2
B.7,24,25
C.4,7.5,8.5
D.3.5,4.5,5.5
4.一个三角形的三边长分别为 15,20,25,那么它的最长边上的高是( ).
A.12.5
B.12
C.
15 2
2
D.9
5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求 BC 的
长.
6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD.
中考网 www.zhongkao.com
中考网 www.zhongkao.com
【提升“学力”】
7.在四边形 ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形
ABCD 的面积.
8.一艘轮船以 20 千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港
口以 15 千米/时的速度向东南方向航行,它们离开港口 2 小时后相距多少千米?
【聚焦“中考”】
9.(2004 年山东省中考题)如下图中的(1)是用硬纸板做成的形状大小完全相同
的直角三角形,两直角边的长分别为 a 和 b,斜边长为 c;下图中(2)是以 c 为直角边
的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明出勾股定理的图形.
(1)画出拼成的这个图形的示意图,写出它是什么图形.
(2)用这个图形推出 a2+b2=c2(勾股定理).
(3)假设图中的(1)中的直角三角有若干个,你能运用图中的(1)所给的直角三
角形拼出另一种能推出 a2+b2=c2 的图形吗?请画出拼后的示意图.(无需证明)
18.2 课时作业优化设计(答案)
1.17,24 2.略 3.D 4.B 5.3 6
6.提示:∵AB⊥AC,AB=4,DA=3,∴BD=5,
又 BC=12,CD=13,∴CD2=BC2+BD2,
∴∠DBC=90°,∴BC⊥BD
7.36,提示:连结 AC 得两个直角三角形 8.50 千米
1
1
(a+b)(a+b)= (a+b)2,
2
2
1
1
1
S 梯形= ab×+ c2=ab+ c2
2
2
2
1
1
∴ (a+b)2=ab+ c2,得 a2+b2=c2.
2
2
9.(2)S 梯形=
中考网 www.zhongkao.com
温馨提示:当前文档最多只能预览 3 页,此文档共6 页,请下载原文档以浏览全部内容。如果当前文档预览出现乱码或未能正常浏览,请先下载原文档进行浏览。
发表评论(共0条评论)
下载需知:
1 该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读
2 除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑修改
3 有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载
4 该文档为会员上传,版权归上传者负责解释,如若侵犯你的隐私或权利,请联系客服投诉

点击加载更多评论>>