- 一级建造师考试
- 二级建造师考试
- 三支一扶
- 安全评价师考试
- 保险经纪资格考试
- 报关员资格考试
- 博士入学考试
- 成人高考
- 成人英语三级考试
- 程序员考试
- 出版专业资格考试
- 大学英语三级
- 大学英语四六级考试
- 单证员考试
- 导游证考试
- 电气工程师
- 电子商务设计师考试
- 房地产经纪人考试
- 房地产评估师考试
- 高级会计师资格考试
- 高考
- 高中会考
- 给排水工程师
- 公共英语等级考试
- 公务员考试
- 国际货运代理
- 国际内审师
- 国家司法考试
- 化工师
- 环境影响评价师
- 会计人员继续教育
- 会计职称考试
- 基金从业资格
- 计算机等级考试
- 计算机软件水平考试
- 监理工程师考试
- 教师招聘
- 教师资格
- 结构工程师考试
- 经济师考试
- 考研
- 空姐招聘
- 遴选
- 美术高考
- 普通话考试
- 期货从业资格
- 求职招聘
- 人力资源管理师
- 软件设计师考试
- 商务英语考试(BEC)
- 社会工作者职业水平考试
- 审计师考试
- 事业单位招聘
- 事业单位招聘
- 数据库系统工程师
- 特许公认会计师(ACCA)
- 同等学力
- 统计师考试
- 托福考试(T0EFL)
- 外贸跟单员考试
- 网络工程师考试
- 网络管理员考试
- 网络规划设计师考试
- 系统分析师考试
- 消防工程师
- 小升初
- 校园招聘
- 信息系统管理工程师考试
- 选调生考试
- 雅思考试
- 岩土工程师考试
- 医生招聘
- 艺术高考(艺考)
- 银行从业人员资格
- 银行招聘
- 英语翻译资格考试
- 营销师考试
- 造假工程师考试
- 证券从业资格考试
- 中考
- 注册安全工程师考试
- 注册测绘师考试
- 注册城市规划师考试
- 注册环保工程师考试
- 注册会计师考试
- 注册计量师考试
- 注册建筑师考试
- 注册税务师考试
- 注册资产评估师
- 专升本考试
- 专业英语四级八级考试
- 自考
- 安全员
- 跟单员
- 考试一本通
- 其它资料
学而思教育·学习改变命运 思考成就未来!
高考网 www.gaokao.com
第二章 直线与平面的位置关系
§2.1.1 平面
一、教学目标:
1、知识与技能
(1)利用生活中的实物对平面进行描述;
(2)掌握平面的表示法及水平放置的直观图;
(3)掌握平面的基本性质及作用;
(4)培养学生的空间想象能力。
2、过程与方法
(1)通过师生的共同讨论,使学生对平面有了感性认识;
(2)让学生归纳整理本节所学知识。
3、情感与价值
使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点
重点:1、平面的概念及表示;
2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具
1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好
地完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板
四、教学思想
(一)实物引入、揭示课题
师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象
你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。与此同时,教师对学生
的活动给予评价。
师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。
(二)研探新知
1、平面含义
师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象
出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示
师:在平面几何中,怎样画直线?(一学生上黑板画)
之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画
成一个平行四边形,锐角画成 450,且横边画成邻边的 2 倍长(如图)
D
C
α
A
B
平面通常用希腊字母 α、β、γ 等表示,如平面 α、平面 β 等,也可以用表示平面的平行四
边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画
(打出投影片)
16
学而思教育·学习改变命运 思考成就未来!
高考网 www.gaokao.com
β
α
β
α
·B
课本 P41 图 2.1-4 说明
平面内有无数个点,平面可以看成点的集合。
点 A 在平面 α 内,记作:A∈αα
点 B 在平面 α 外,记作:B α
·A
α
2.1-4
3、平面的基本性质
教师引导学生思考教材 P41 的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上
用事实引导学生归纳出以下公理
公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(教师引导学生阅读教材 P42 前几行相关内容,并加以解析)
符号表示为
A∈αL
A
α ·
B∈αL
=> L α
·B
L
A∈αα
B∈αα
公理 1 作用:判断直线是否在平面内
师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……
引导学生归纳出公理 2
A
B
公理 2:过不在一条直线上的三点,有且只有一个平面。
α ·
C ·
符号表示为:A、B、C 三点不共线 => 有且只有一个平面 α,
·
使 A∈αα、B∈αα、C∈αα。
公理 2 作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读 P42 的思考题,从而归纳出公理 3
公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
β
符号表示为:P∈αα∩β =>α∩β=L,且 P∈αL
公理 3 作用:判定两个平面是否相交的依据
α
P
·
L
4、教材 P43 例 1
通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用。
5、课堂练习:课本 P44 练习 1、2、3、4
6、课时小结:(师生互动,共同归纳)
(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?
16
学而思教育·学习改变命运 思考成就未来!
高考网 www.gaokao.com
7、作业布置
(1)复习本节课内容;
(2)预习:同一平面内的两条直线有几种位置关系?
§2.1.2 空间中直线与直线之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;
(3)理解并掌握公理 4;
(4)理解并掌握等角定理;
(5)异面直线所成角的定义、范围及应用。
2、过程与方法
(1)师生的共同讨论与讲授法相结合;
(2)让学生在学习过程不断归纳整理所学知识。
3、情感与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。
二、教学重点、难点
重点:1、异面直线的概念;
2、公理 4 及等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具
1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目
标。
2、教学用具:投影仪、投影片、长方体模型、三角板
四、教学思想
(一)创设情景、导入课题
1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任
何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)
(二)讲授新课
1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
共面直线
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。
教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
16
学而思教育·学习改变命运 思考成就未来!
高考网 www.gaokao.com
2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平
行。在空间中,是否有类似的规律?
组织学生思考:
长方体 ABCD-A'B'C'D'中,
BB'∥AA',DD'∥AA',
BB'与 DD'平行吗?
生:平行
再联系其他相应实例归纳出公理 4
公理 4:平行于同一条直线的两条直线互相平行。
符号表示为:设 a、b、c 是三条直线
=>a∥c
a∥b
c∥b
强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理 4 作用:判断空间两条直线平行的依据。
(2)例 2(投影片)
例 2 的讲解让学生掌握了公理 4 的运用
(3)教材 P47 探究
让学生在思考和交流中提升了对公理 4 的运用能力。
3、组织学生思考教材 P47 的思考题
(投影)
让学生观察、思考:
∠ADC 与 A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?
生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800
教师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线 a、b,经过空间中任一点 O 作直线 a'∥a、b'∥b,我们把
a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角)。
(2)强调:
① a'与 b'所成的角的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为了简便,点
2
16
学而思教育·学习改变命运 思考成就未来!
高考网 www.gaokao.com
O 一般取在两直线中的一条上;
② 两条异面直线所成的角 θ∈α(0, );
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 a⊥b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例 3(投影)
例 3 的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。
(三)课堂练习
教材 P49 练习 1、2
充分调动学生动手的积极性,教师适时给予肯定。
(四)课堂小结
在师生互动中让学生了解:
(1)本节课学习了哪些知识内容?
(2)计算异面直线所成的角应注意什么?
(五)课后作业
1、判断题:
(1)a∥b c⊥a => c⊥b ( )
(1)a⊥c b⊥c => a⊥b ( )
2、填空题:
在正方体 ABCD-A'B'C'D'中,与 BD'成异面直线的有 ________ 条。
§2.1.3 — 2.1.4 空间中直线与平面、
平面与平面之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、导入课题
教师以生活中的实例以及课本 P49 的思考题为载体,提出了:空间中直线与平面有多少种
16
温馨提示:当前文档最多只能预览 8 页,此文档共16 页,请下载原文档以浏览全部内容。如果当前文档预览出现乱码或未能正常浏览,请先下载原文档进行浏览。
发表评论(共0条评论)
下载需知:
1 该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读
2 除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑修改
3 有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载
4 该文档为会员上传,版权归上传者负责解释,如若侵犯你的隐私或权利,请联系客服投诉

点击加载更多评论>>