- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
【例2】:三位数的自然数P满足:除以 3 余 2,除以 7 余 3,除以 11 余 4,则符合条件的自然数 P 有多少个?
A. 5 B.4 C.6 D.7
【答案】 B。
【解析】此题不满足前面三种形式,故采用逐步满足法,先从最大的除数开始满足,满足除以 11 余 4 的最小数为 15,则11n+15 都满足这一条件,当 n=0、 1、 2、 3 时,均不满足除以 7 余 3,当 n=4 时, 11n+15=59,满足除以 7 余 3, 11 和 7 的最小公倍数是 77,则 77n+59 都满足这两个条件。当 n=0 时, 59满足除以 3 余 2, 77 和 3 的最小公倍数是 231,则 231n+59 满足以上三个条件。又因为P为三位数,所以 n 只能取 1、 2、 3、 4,即符合条件的自然数P有 4 个,选择 B。
认为,对于此类问题进行适当的转化,使之变成大家常见的形式,在解答数学运算时有部分可用代入法,但却不是达到秒杀之速度,所以就需认清题干,使用技巧,快速解题,相信这类题型将是是大家备考路上乐于见到的。
责编:贺娟花
| 课程专业名称 |
讲师 |
课时 |
查看课程 |
|---|
| 课程专业名称 |
讲师 |
课时 |
查看课程 |
|---|
点击加载更多评论>>