- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
【例3】:某干旱地区为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:在标准以内,每立方米的水费为1.2元,超过标准线的部分每立方米多交0.3元;如果标准用水量为5吨,那么张家比李家多交水费5.4元,若水费标准和两家用水量都是正整数,那么张家比李家多用几顿水?
设张家用水x吨,李家用水y吨,则有三种可能性:①若两家用水都在标准用水量以内,方程为:1.2x-1.2y=5.4,显然无正整数解,因此排除;②若两家用水都在标准用水量以外,方程为:(1.2+0.3)x-(1.2+0.3)y=5.4,显然也无正整数解,因此排除;③张家用水超过标准用水量,李家用水低于标准用水量。
方法一,常规思维得到:张家总水费为1.2×5+(x-5)·(1.2+0.3),李家水费为1.2y,方程为:1.2×5+(x-5)·(1.2+0.3)-1.2y=5.4,化简得:1.5x-1.2y=6.9,利用同余特性解得x=7,y=3,张家比李家多:x-y=4吨。
方法二,设张家比标准用水量多x吨,那么张家水费比标准水费多(1.2+0.3)x=1.5x,设李家比标准用水量少y吨,那么李家水费比标准水费少1.2y。根据题意得到方程:1.5x+1.2y=5.4,利用同余特性解得:x=2,y=2。张家用水5+2=7吨,李家用水5-2=3吨,张家比李家多7-3=4吨。
显然方法二中比较构造法列的方程更为简洁明了,提高了解题效率,降低出错率。
综合起来看这三道题,总结:比较构造法解题的时候为什么会比等量构造法要简便呢,这是因为,我们把不同维度的相同部分暂时不去比较,只关注其相异部分,并根据其建立等量关系,这就给我们的做题带来极大的便利。
责编:贺娟花
| 课程专业名称 |
讲师 |
课时 |
查看课程 |
|---|
| 课程专业名称 |
讲师 |
课时 |
查看课程 |
|---|
点击加载更多评论>>